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Abstract For chaotic systems the semiclassical approximation to the time-dependent propagator 
consists of a large number of terms, some of which may involve classical trajectories near focal 
points (caustics). Despite this the approximation has been found to remain accurate for relntively 
long times. In this article, that accuncy and potential reasons for its breakdown are sNdied. 
The principal Lo01 is the Jawbi-Morse equation, the eigenvalue equation associated with the 
second vahtional derivative of the classical action. Our explana6on for the accuracy lies partly 
in the following mnsiderations: (1) verification of the efficacy of phase space smearing, (2) 
given an explicit form of the near caustic propagator, it is seen that the arguments concerning 
loops in phase space m y  be less relevant than the determination of the amount of separation in 
path-space, (3) and finally, the caustics in the chaotic examples SNdied may not be placed for 
maximum mischief. 

1. Introduction 

A recent article [ l ]  dealt with ‘unexpected long time accuracy’ for the semiclassical 
time-dependent propagator for a system whose classical mechanics exhibits hard chaos. 
Unexpected behaviour of thk sort has characterized much work on the quantization of 
chaotic systems. An early and germane example is the success [Z] of the sum over classical 
paths expansion, in energy-dependent form, at providing energy levels for classically chaotic 
systems. For further background, see [3]. 

In this article we bring to bear a number of analytic methods in an effort to understand 
the aforementioned long-time accuracy results of Heller and Tomsovic [l,  41. The principal 
reasons one might find the accuracy surprising is the existence of an enormous number 
of classical paths satisfying the two-time boundary conditions and the presumed influence 
of caustics, which generally invalidate elementary semiclassical approximations. There are 
other ways of phrasing this, such as the formation of folds and small (on R-related scales) 
loops in the LaErange manifolds [5], and we will discuss aspects of this description as well. 

A second goal of this article is to further develop analytic techniques based on what we 
here name the Jucobi-Morse equaiion. This method was used in the analysis of caustics 
many years ago [6] and elaborated in [7]. It can sometimes provide information not 
otherwise available, although in other cases it may require lengthy analysis to recover simple 
results. In at least one example below we will do an exercise of the latter sort; nevertheless, 
that same exercise provides information leading to conclusions that have not otherwise been 
obtained. By the Jacohi-Morse equation I mean the Schriidinger-like equation that arises 
from the second variation of the classical action [8]. Because this article is already rather 
long I will not provide background or review the interrelations of this operator-second- 
variation with the van Vleck determinant, the equation of geodesic deviation, etc. This can 
be found in [7]. 
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Our calculations show how the results of [l] can have come about. If there is a general 
principle operating it is that there is more room in path space than phase space, so that 
semiclassical stationary phase contributions from the path integral can be separated even 
though when represented in phase space they appear to be close. Another principle that 
plays a role-in a sense an extension of the correspondence principle-is an interplay 
of classical chaos and a kind of quantum ergodicity. ‘Ergodicity’ suggests that one should 
reach all accessible points of phase space with equal likelihood. In terms of the semiclassical 
propagator this demands destructive interference of many terms. We shall see (at least in 
coordinate space) that this cancellation takes place precisely because of the classical chaos. 
In the process of accounting for the results of [l] we also find that the stadium may not be the 
best laboratory for discovering whether this long-time accuracy will hold for more realistic 
chaotic systems. The caustics, which are the source of most of the potential mischief and 
which necessarily exist by virtue of path proliferation, may not be as dangerous for this 
system as for others. This is because we find that many of them are at the walls of the 
stadium. How common focussing is within the stadium we do not know. 

This article is divided in two parts, classical mechanics and quantum mechanics. In 
section 2 we concentrate on classical arguments concerning the multiplicity of paths, their 
proliferation and the role of caustics. We define the Jacobi-Morse equation and use it 
first to establish the existence of a caustic at each reflection off a wall. By variations of 
this technique we establish the temporal duration for the passage of a trajectory through a 
caustic, even in the presence of chaos. We also discuss the fragmentation of caustics due 
to the curved-flat transition along the wall. In section 3 we work from the semiclassical 
approximation but use a form that is applicable in the immediate neighbourhood of the 
caustic. In this way we derive the explicit form of the phase space propagator and confirm 
the conclusions in [9]: on the effectiveness of phase space. averaging for ameliorating the 
effects of the caustic. We also examine the problem of nearby stationary points (classical 
paths) and small loops in phase space. This is where the ‘general principle’ mentioned 
above may operate. As the last step in treating [l], we consider the random walk arguments 
involved in the chaos induced destructive interference necessary to recover the ergodic form 
of the propagator. In a small digression we also consider results that this formalism can 
provide for the theory of random potentials. Finally, in section 4, we discuss our conclusions 
and questions that they raise. 

2. Classical mechanics 

In this section we work within a classical context. We make extensive use of the Jacobi- 
Morse equation, namely the study of the spectrum and eigenfunctions of the operator 
corresponding to the second variational derivative of the classical action. Leading up to 
this, we first discuss the proliferation of paths and distinguish two ways in which such 
proliferation can occur. Then we relate the rate of proliferation to the Lyapunov exponents. 
To study caustics we use the Jacobi-Morse equation and establish the existence of a caustic 
with each passage of the classical path through a reflection. Such caustics are well known, 
but they tend to be overlooked when one considers the difficulties caustics can cause for the 
semiclassical approximation in quantum mechanics. I also remark that rather little seems 
to be known about the location of thefied time caustics in the stadium, in contrast to the 
more easily computed fixed energy caustics. Finally we take up the question of how rapidly 
trajectories pass through caustics, both for the ordinary caustics not involved in reflections 
of the hard wall and for those involved in such reflection. One might have thought that 
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there would be rapid passage of the path through the caustic for chaotic dynamics, but from 
study of thc Jacobi-Morse equation this is found not to be the case. 

Throughout, we are concerned with the frred time classical boundary-value problem. 
That is, let the classical coordinate space be X (a manifold). Two endpoints, xo and XT, 
and a fixed time T are given. We seek paths x(t) that satisfy the~equations of motion such 
that x ( 0 )  =.XO and x ( T )  = XT. 

2.1. Proliferation of paths 

By compactifying a space of constant negative curvature one can arrive at multiple solutions 
of the two-time boundary-value problem. The Jacobi field can never vanish on such a space 
[lo] and there are no caustics. This is a clean way to generate multiple solutions to the 
two-time boundary-value problem and is used in some studies of quantum chaos (e.g., [Z]). 
It is not the context for studying problems due to caustics. The solutions of the two-time 
boundary-value problem are intimately related to the non-trivial topology of the space. 

For spaces for which the topology is trivial the proliferation of paths occurs in 
conjunction with caustics. To see how this proliferation occurs, first consider the situation 
where the endpoint XT is a focal point for the initial condition xo (for the particular, fixed 
T). For that same T the boundary-value problem for points x~ + Ax has zero, one or 
two solutions. Those Ax for which there is but one solution form a surface (generically 
a hypersurface of co-dimension 1)  on one side of which there are two solutions to the 
boundary-value problem, on the other zero. In terms of the trajectory x ( t )  (which is the one 
that focusses at T ) ,  the region of zero solutions lies on the side where x ( t )  was located for 
t < T and the two-solution region lies where x ( t )  is located for later timest. One can also 
consider the sequence of boundary-value problems for solutions c(s), with e(0) = x(O), 
c(t) = x ( t )  (with x ( t )  the particular path we have been considering). As x ( t )  passes 
through conjugate points, 6*S acquires additional negative eigenvalues, as is known !?om 
Morse theory. In going through each of these one goes from having a certain variation in 
path space (that in the direction of the Jacobi field) correspond to a minimum to having it 
be a local maximum. In terms of the expansions of (13) and (14) below, one goes from 
having a term Au’ (with A large and positive) dominate to having a polynomial hu2 + pu3 
which will have an additional classical path associated with its stationary point when A is 
near zero. This is the proliferation mechanism associated with caustics. 

 although both kinds of path proliferation can occur in the same system, for the stadium 
there is only caustic driven proliferation. Therefore caustics must appear along the many 
solutions of the boundary-value problem and from the success of the numerical semiclassical 
work [I, 41 one might conclude that the caustic problem had been neutralized. As we show 
below, many caustics are at the edges of the stadium so that the necessity of caustics 
as deduced from path proliferation does not by itself indicate that their effect on the 
semiclassical approximation has been eliminated. 

Finally we remark that focussing by itself does not lead to the exponential (with time) 
proliferation of paths. An example of caustics without path proliferation is given in the 
appendix. 

2.2. Path multlpliciry for chaotic dynw’cs 

Using general arguments we now show that the multiplicity of paths satisfying given 
boundary conditions grows like exp(At), where A is the largest Lyapunov exponent. 

t Not to be confused: on the zero solution side x(1) is a classical SOlUtion solving a different boundary-value 
problem. It only runs for a time T - AT (with AT positive) and =aches. not x ( T ) ,  but x ( T  - A T ) .  

~ ~ 
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Assume a system in ddimensions is confined to a spatial region of size V = Ld.  We 
look at classical paths that begin in a small volume ui, with lql = ld = U. We wish to 
know how many families of trajectories begin in uj at time 0 and end in some (possibly 
other) volume uf of the same size, a time T later. An upper limit of energy is also assumed. 

Under classical dynamics the initial region v, stretches and shrinks along various 
directions, these rates (described by Lyapunov exponents) being governed by the 
multidimensional Jacobi equation. When one dimension of the volume ui stretches beyond 
the length L there must be folding, and for large AT there is folding and refolding. The 
number of families of trajectories satisfying the two-time boundary condition will be the 
number of stretched tendrils that pass through the final volume uf. This can be estimated 
if one assumes that the stretched ui is randomly distributed throughout V. The longest 
dimension of the stretched 3 is l f  = x exp(AT). For a random distribution this can 
be thought of as l f / L  sticks of length L that have been tossed into V .  The number of 
such sticks that intersect uf is estimated as follows: the probability that a (thin) stick hits a 
volume ld is the probability that a stick thickenedt by ld-' intersects any particular point 
in V .  But this is the ratio of the volume of the thickened stick to the entire volume, V .  This 
ratio is L x l d - ' / V .  Multiplying this by the number of sticks gives the total (probable) 
number of intersections, which is therefore 

[?I. [$] = Lexp(AT). V 

If the initial and final volumes are different a slightly more complicated answer emerges. 
In this argument we have implicitly assumed that only one Lyapunov exponent is large, 

where 'large' means that for a given Lyapunov exponent Ak the quantity exp(hkT) is large 
compared to L l l .  In  the case of more than one large Lyapunov exponent, you will get- 
instead of the elongated stick discussed above-a sheet or hypersurface of dimension equal 
to the number of large exponents. This reduces the number of dimensions by 'which this 
hypersurface is thickened (in analogy to the thickened stick argument above) so the factor 
u/V still results. What is different is that now the number of families of paths is given by 
that factor times exp(T AX), where the sum runs over 'large' hks. 

2.3. Caustics at a wall 

In this subsection we will show that whenever a trajectory bounces off a wall there is a 
point along it, near the wall, that is conjugate to the initial point on the trajectory; in other 
words there is a caustic. 

There are two kinds of wall: hard and soft, namely infinite or finite slope at the turning 
point. In WKB these do not go over to one another smoothly (as the slope goes to infinity) 
although the classical mechanics is the same. The boundary conditions used in the numerical 
studies of [I] appear to be hard wall, but for the analysis of where the classical caustics lie 
this does not matter. To show that in bouncing off a wall a trajectory acquires a conjugate 
point, we will establish that one of the eigenvalues of 8*S, the second variation of the 
classical action, goes through zero. Motion parallel to the wall does not play a role and we 
confine attention to one dimension. 

t That is, thickened by e in each m ~ v e n e  direction. Note thal the argument does not require (or prohibit) 
shrinking of other dimensions of U;. only that they not grow. 
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Consider therefore the Hamiltonian H = p2 /2m + V(x), with V ( x )  small for x > 0 
and large for x < 0. Examples (in which R is a large parameter) are 

0(-x)D hard wall 
0(-x)Rlxl linear wall 
0(-x)fmQ2x2 harmonic wall 
exp(-Dx) exponential wall. 

V ( x )  = 

We begin with the harmonic case. Without loss of generality, set m = 1 and the time 
interval to be [ - T / 2 ,  T / 2 ] .  Also, OUI point is not affected by simplifying to the case 
of equal initial and final position values. The particle therefore has boundary conditions 
x(-T/2)  = x ( T / 2 )  = a. This classical two-time boundary condition has the solution 

1 
v ( t  - p )  

x( - t )  t < o  

ir -= t e f~ 
~ ( t )  = (u /Q)s in (D( t  - 45)) o < t i iz (3) 

(4) 

where 4 satisfies the boundary conditions C$(-T/2) = C$(T/2) = 0. Those As for which 
this boundary-value problem can be solved are the points~of the spectrum of J2S. The 
vanishing of such a A signifies a conjugate point of the motion (with respect to the initial 
condition x ( - T / 2 )  = a )  and a solution of the Jacobi equation. Equation (4) is of the 
Sturn-Liouville type and I call it and its higher dimensional generalization the Jacobi- 
Morse equation. Despite its resemblance to the Schrodinger equation, its appearance here 
is entirely in the service of the classical mechanics. Equation (4) can be rewritten in the 
suggestive form 

(5 ) 

1 '  
where 5 = r/Q and U = 2 a / ( T  - z). As usual [7], we solve 

&t) + V"[x(t)]C$(t) + LC$(t) = 0 

- 4  + U ( t M  = A4 
and for the harmonic oscillator soft wall U ( t )  is a step function 

(6) 
2 1  f i  u ( t )  -R 0(7z - It])  - - 0 ( f r  - Itl) r 

with fi  r 2 / r .  We are interested in D + 00 or z + 0, so that (5) and (6) give a delta 
function, well known to possess a single bound state, at least if the boundary conditions 
are ignored. Note though that the strength of the delta function is also going to infinity, 
so that additional bound states could in principle appear. In fact it will be seen that in 
this problem the strength will be so large that there is almost a second bound state. For 
even eigenfunctions and ignorin the t f T / 2  boundary conditions, the equation for the 
eigenvalue is tan9 = ,/& w i z  0 = k r / 2  and k = m. This has exactly 
one solution and there is therefore always one even eigenfunction with A c 0. One finds 
that h x -0.6464 x &. so that h + -CO as D + CO. Since [A[ is large, ignoring the 
f T / 2  boundary condition is permissible. The lowest odd eigenfunction is more subtle. 
Ignoring the i T / 2  boundary condition yields an eigenvalue zero, so merely arguing from 
the constricting effect of the boundary condition already implies that the value is pushed 
higher and no further negative eigenvalues exist. It turns out that the positive value of this 



1708 L S Schulman 

eigenvalue goes like Q (rather than a'). What is interesting is that if there were not perfect 
matching between the strength of the potential and its width, the scaling of U of (5) could 
have led to additional negative h states. This will be explained below. 

We confirm from this that a trajectory that has bounced off a soft wall develops a single 
conjugate point. However, the passage of the eigenvalue (of 6s') through zero okurs close 
to the wall. In fact, very close, since by the time the trajectory moves away from the wall 
that eigenvalue has sunk to negative values proportional to 52'. (Strictly, our x( iT/2)  = a  
boundary condition does not say where the conjugacy occurs; nevertheless a straightforward 
calculation establishes the foregoing assertions.) 

For the other kinds of soft walls there is always one eigenvalue that is well into 
the negative regime and another that is just pushed positive by boundary conditions at 
t = &T/2. For example, the exponential wall V ( x )  = exp(-Qx) (with rn = 1) gives 
x( t )  = xo + (2/Q)logcosh(Qkt/2) with k ,  xo, a and T related by k2 = 2exp(-Qxo) and 
kexp(Qa/2) = &cosh(QkT/2). The eigenvalue equation for 6's turns out to involve a 
'potential' of the form 

-2wz 
cosh' wt 

U(t) - with o = a Q / T .  (7) 

This is a well known potential [Ill, having special properties for the strength - 2 0 ~ .  Like 
the U of (6), this potential has one bound state whose value goes infinitely negative (c( Q2). 
And like the other potential, were it not for the t = f T / 2  boundary condition it would 
have a point in the spectrum exactly at zero. 

The solution for each of our stiff (i.e. Q + 00) 'soft' walls displays two features. 
(i) The potential-which tends to a delta function-has a coefficient that tends to infinity, 
allowing in principle more than one bound state for that potential. The binding energy of the 
ground state goes to infinity. (ii) Nevertheless, in all cases the second (potential) bound state 
just barely does not occur. Here is the explanation: pick a fixed solution of the classical 
equations of motion, x( . ) .  Consider a sequence of boundary-value problems defined by 
x(0 )  and x ( T ) ,  and consider the value of h(T)  for each T. (This is a different perspective 
from that which we have been using. Now both the final point x ( T )  and T vary.) Until 
x ( T )  bounces off the wall, there is no negative eigenvalue for 6's. Just after the bounce, 
a2S should have its first negative eigenvalue since for two close paths the one that was 
behind would now be ahead (this is essential to the focussing). But for x ( T )  slightly past 
the reflection, the boundary condition for the function g ( T )  is precisely that it vanish a 
little more than halfway through the full potential U @ ) ,  that is, the potential equation (7) 
associated with T of our previous perspective, namely T such that x(T) = x(0). Having 
a negative eigenvalue at the halfway. point would be the same as having an odd bound 
eigenfunction of the full L T ( I ) .  Thus U ( t )  must be such that its first odd eigenfunction have 
its eigenvalue just above zero. 

2.4. Temporal duration of the passage through a caustic 

In a chaotic system it will not be easy to focus at distant future times. There is at least 
one initial direction along which points quickly separate, so that focussing can only be 
achieved by assiduously avoiding the bad direction or directions. Does this mean that there 
is something strange about the conjugacy, when it does occur? For example, one might 
speculate that passage through the focal point is more rapid than for non-chaotic systems, 
making a randomly selected path-point on a trajectory unlikely to be near a focal point. 
As far as I can tell, the focal points are not different from their non-chaotic counterparts, 
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at least with regard to the rate (in time) at which the eigenvalues of the Jacobi-Morse 
equation increase and decrease as x ( t )  passes through the focus. Here is a perturbation 
theory calculation that estimates that rate. 

In this calculation we consider a family of Jacohi-Morse equations. A particular classical 
path x ( t )  is picked with 0 4 f 6 Tmax and for each T e T,, we examine the two-time 
boundary-value problem c(0) = a,  c ( T )  = b with a = x(0)  and b = x ( T ) .  For simplicity 
we work in one dimension @ut see the remark at the end of this subsection). Our original 
path x ( t )  is of course a solution to this classical~boundary-value problem. Thus for each T 
there will be an associated Jacobi-Morse equation and in ~ t i n g  this we now emphasize 
the dependence of the ‘potential‘ U and the eigenvalue A on T .  The equation takes the 
form 

- + W f ) @ T @ I  = W ) @ r ( t )  (8) 

with U r ( t )  E -V”(x(t))  for 0 < t < T and @T(O) = &(T)  = 0. As T varies, so do the 
boundary conditions for the differential equation. In addition, new portions of the function 
x(f) play a role. Suppose then that for some To there is a conjugate point, that is, A(T0) = 0. 
(There is also an index for A indicating which eigenvalue of the equation is under discussion, 
but since we are concentrating on a particular eigenvalue near zero we suppress this index.) 
We estimate A(To + A T )  using a perturbation method. For T = TO + AT we again have (8) 
with TO + AT replacing TO everywhere. Define a new time variable s = t / ( l  + E ) ,  where 
E = AT/To, and define @(s) E  AT(^). Thus @ has the same boundary conditions as 
@T~. namely @(O) = @(TO) = 0. To lowest order in 6, the equation for $I is 

~ ~ 

- @“(s) + U ( S ) @ ( S )  - E[ZU(s) +sU’(s)l$I = (AA)@ 

where U is UG,~the prime on @ is a/&, the prime on U is the derivative with respect to 
its argument and AA =~A(To + A T )  (since A(T0) = 0). By ord inq  perturbation theory, 
AA is estimated to be AA = €1: dt@(t)*[2U(t) + tU’( t ) ]@(t ) ,  with @ the eigenfunction 
for the A = 0 solution at T = TO. This implies 

ah 1 cl - = - 1 dt@(t)*[2U(t) + tu‘(t)]@(t). 
aT To o 

With repeated integrations by parts, making use both of the equation of motion for q5 and 
its boundary conditions, (9) leads to 

a result that recalls the appearance of the same quantity in a corresponding estimate in 
Morse theory (cf [7, p 851). The negative definiteness of aA/aT reflects the fact that the 
number of conjugate points only increases along a patht. For our purposes, (IO) stands 
out because it is nothing special. That is, the fact that the dynamics are chaotic makes this 
expression neither particularly large nor small. In principle, it might still happen that &T) 
is large, but we will show below that (except for the bounces off the wall) this does not 
happen, basing our arguments on the Jacobi-Morse equation. It follows that the duration 

t As remked in [7, p 1461 one can Iwk on our semiclassical calculwions as a differential equations proof of 
Morse theory. As such, (10) constitutes a component of that demonstration. 
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of conjugate points, the likelihood of landing upon one at any particular stage of a path's 
development, is as large or small as it is for non-chaotic dynamics. 

Equation (10) is also consistent with~the picture developed earlier in which the caustic 
due to reflection is located dose to the, wall. In that case the right-hand side of (10) is 
large. We thus have a situation in which x(T0) (the focal point), is within the wall (i.e. for 
a soft wall, is negative) and, as usual, 6 vanishes at TO. As remarked earlier, 6 will look 
l i e  the odd eigenfunction for the deep delta function potential. Most of its weight is in the 
square-we11 (on its way to bec0ming.a delta function) potential; nevertheless, it vanishes 
near the edge of this well. This can only happen if the derivative is large. 

Remark. The above demonstration dealt with one dimension. In higher dimensions one can 
follow the same steps, but instead of starting from (S), one uses the multidimensional Jacobi- 
Morse equation, (ll), below. The added indices, coming on top of the several integrations 
by parts, make the demonstration lengthier. The result is ah/aT = - Ce I&(To)I*. The 
only potential subtlety concerns (non-generic) higher order caustics which would necessitate 
the use of degenerate peaurbation theory. 

2.5. Ordinary caustics wzd theirfragmentation 

In general a free particle or a particle bouncing off straight walls will not focus and will 
have no caustics. Moreover, from the standpoint of the Jacobi equation, the only thing that 
can cause focussing is a non-zero secoxd-derivative of the potential term ( V " [ x ( t ) ]  in (4)). 
Therefore it is of interest to see how the large potential at the wall can cause the remote and 
finite ordinary focussing that occurs due to the curved surface in the stadium (or any other 
curved, hard surface). 'Finite' focussing refers in particular to the finiteness of even 
as the hardness parameter (which we have called a) goes to infinity. 

To study this phenomenon we must go to at least two dimensions. The Jacobi-Morse 
equation is now a bit more complicated 

This is a Schrodinger-like equation for a multicomponent 'wavefunction'. Conventional 
focussing occurs when the path bounces off a curved surface. One can soften the potential 
and take V of the form V ( x ,  y )  =-$'(r - l)Q2(r - 1)2 with r = m. Without loss 
of generality, we assume the path bounces off the mirror at x = 1, y = 0, coming in at 
some angle. We will not go into the details of the calculation, which is only slightly more 
complicated than what was encountered previously (equation (3), etc). The second partial of 
v, &k as in (I I )  above, has two principal constituents. Fist there is an O(Q2) part for V, 
which does exactly what we calculated earlier for any bounce situation. However, because 
of the second component, we have additional richness and this is what allows focussing 
in the middle of the stadium. In particular, both V, and V, have O(Q) pieces. This 
will allow a bound state in the orthogonal direction (the Jacobi fieid at the minor surface 
is parallel to the tangent to the mirror) which, because the width of the potential is stili 
O(l/Q), gives an 'energy' scale of order unity. This allows the eigenvalue (of 8's) to pass 
through zero well away from the wall, and in fact in such a way as to give conventional 
caustics. 

This calculation also allows us to argue that the quantity @(T) is not large for focal 
points away from the walls of the stadium. (This issue was raised following (IO).) The 
function $ ( t ) ,  0 < t < T, is an eigenfunction of the Jacobi-Morse equation with eigenvalue 
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zero (that is what is meant by focussing). In this case the Jacobi-Morse equation is the 
Schriidinger equation of a particle in a box with an interior potential that is mostly zero. It 
is only non-zero when the path x ( t )  (the argument of V") hits the wall, and then it looks 
roughly l i e  an attractive delta function. Therefore in the interior of the stadium the function 
C is basically a sine function vanishing at T and doing nothing interesting since x ( f ) s  last 
encounter with a wall. This last encounter occurred an 0(1) time earlier (related to the 
distance the observation point is from the wall) and therefore the wave number associated 
with this portion of q3 is also order unity. This wave number is essentially I$(T)I. Even 
when this might be larger because of relative proximity to the wall, its size certainly has 
nothing to do with the exponential growth associated with chaos. (As will be discussed in 
section 3.6, there may be reasons for q3(T), hence $ ( T )  to be small, namely localization in 
a quasi random potential. There is as yet no evidence for this, perhaps because the times 
studied have not been large enough.) 

In two dimensions, a curved surface will generically give rise to a line of caustics and the 
same is expected of the curved portion of the stadium wall. However, the stadium boundary 
has a discontinuity in the second derivative of its bounding curve and at four points goes 
from circular to flat. The caustic line associated with the curved portion will cease at this 
point, since a flat reflector does not focus. (I here refer to the focussing away from the 
walls. As shown earlier, in the direction orthogonal to the wall there is always a caustic at 
the wall.) An exercise (not done by the author) would be to trace the disappearance of the 
caustic for the softened wall, which should reach a bit into the flat region, as Q + W. 

This .same phenomenon will also have dramatic consequences on the structure of 
Lagrangian manifolds 1121. .For one dimension, the caustic (that we derived above) is 
easy to see in the language of Lagrange manifolds. Without a softening of the wall you 
would have a line coming in (say from the left-the coordinate is taken as the abscissa, 
the momentum the ordinate) and its reflection going out with reversed momentum. With 
slight softening, these would be connected by a nearly vertical curve and the point furthest 
to the right on that curve would correspond to the caustic. As noted, the two-dimensional 
focussing in the interior of the stadium is more subtle and the fold in the manifold only 
develops as the manifold progresses back to the interior of the stadium. It follows that 
the fold only develops for the part reflected off the c q e d  portion of the stadium wall and 
not the flat part. The manifold will therefore show a terminating wrinkle. Much of the 
intuitive thinking about limits of the semiclassical approximation involves considering the 
long fingers of less than interior area h that develop in the Lagrange manifold (see, e.g. 
figure 5 in [3]). The breaks that we have just shown must exist in the folding make much 
of this reasoning inapplicable to the stadium. It also means that the numerical success for 
the semiclassical approximation in the stadium does not in itself contradict the foregoing 
intuition. 

3. Quantum mechanics 

The rich variational structure of classical mechanics finds its way into quantum theory 
through the semiclassical expressiont for the propagator 

t Since (12) breaks down at caustics it does not quite c q  all that structure. Equation (13) below, and its 
generalizations. deal with focussing phenomena. 
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The usual context is assumed Hamiltonian, H ,  Lagrangian, L, corresponding classical 
system with classical action S, with the latter symbol serving to designate both a function 
of all smooth paths (J Ldt) and the solution of the Hamilton-Jacobi equation for particular 
solutions (labelled by a) of the classical equations with x&) equal to a at s = 0 and to 
b at s = t .  The quantities a, b, x ( t ) ,  etc. are points in d-dimensional coordinate space. 
The propagator is defined as the integral kernel of the operator exp(-iHt/R) and (12) is 
its small A approximation. The application of this formula to systems with chaos was first 
proposed by Gutzwiller. Until recently this formula had been mostly used after Fourier 
transformation as a way to deduce energy levels. It is the phase space smearing of the 
time-dependent version above and its successes in 111 that occupy us here. 

As stated in the introduction, much of our analysis is based on the Jacobi-Morse 
equation, that is, the spectrum and eigenvalues of,6*S, the second variational derivative 
of the action. As is found for example in [7], the van Vleck determinant, which is the 
determinant of the second derivative of the action as afunction of the boundary conditions 
for the propagator, is essentially the inverse of the product of the eigenvalues of 6’s. There 
are many interesting subtleties surrounding this relation in addition to the correspondences 
that we exploit directly in this paper. 

An example of the interweaving of classical spectral properties and quantum mechanics 
is the information one can deduce concerning the product of eigenvalues of the operator J2S. 
In section 2, we noted that on reflection at a wall one eigenvalue goes through zero. But we 
actually found more than that. As the stiffness of the wall (Q) grew, the eigenvalue went to 
-CO like -const. Qz. Nevertheless, after the reflection we do not expect anything untoward 
in the behaviour of the van Vleck determinant. (Of course there is a sign change, usually 
invested with mysterious properties, but here seen merely as a negative eigenvalue in the 
productt). Indeed, there is nothing untoward, and it continues to satisfy a simple differential 
equation (the Jacobi equation). What is happening is that while one eigenvalue grows in 
absolute value, the others-the many others-shrink, in such a way as to prevent divergence. 
I have only checked this assertion numerically, but it is an immediate consequence of the 
relation of the van Vleck determinant, the determinant of a d x d matrix, to the infinite 
determinant of the operator 6’s. 

From this same relation it is clear that the set of eigenvalues { A )  carries information on 
the positive Lyapunov exponent. This connection can be checked analytically in a specific 
example. It is simple to calculate the spectrum of 6’s for the onedimensional parabolic 
potential V ( x )  = ax2/2. The eigenvalues (of 6’s) have the same form whether a > 0 
or a < 0. But in one case the (inverse of the) van Vleck determinant has a s inf i t  
dependence and in the other sinh mt, which grows exponentially (consistent, by the way, 
with our assertions below on the shrinkage of each contribution to G in chaos). In this 
case though one can check explicitly the relation between the infinite product and the van 
Vleck determinant (but I will not reproduce the calculation here). It is interesting that 
the exponential shrinkage in the van Vleck determinant does not arise from any single 
eigenvalue but from a cumulative effect of all of them. 

In the introduction we noted that there were (at least) two potential problems in the use 
of (12) for chaotic systems. First there is the possibility that the endpoint of the motion is 
conjugate to the initial point for some of the paths, that is, there are caustics. And secondly 
there is the tremendous multiplicity of paths. In the next subsections we take up these 
questions. 

t For Wly vertical walls quantum mechanics requires an additional sign change inside the square mot. This has 
no influence in classical caustic counting nor on the caustics within the stadium. 
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3.1. Smearing the caustic ‘blowup’ with phase space averaging 

The prefactor in (12), the square root of the van Vleck determinant, diverges when the 
endpoint of the classical path is conjugate to the starting point, that is, when there is 
focussing. Alternative descriptions of this blowup are either noting that one (or more) of 
the eigenvalues of 6’s vanishes or that the van Vleck determinant can also be expressed 
as l/[axfi.&pi,,jri~J and that focussing corresponds to having little change in final position 
as the initial momentum varies. Either way, at a caustic there is a breakdown in the 
semiclassical approximation. 

Now the singularity associated with a caustic is a coordinate space phenomenon. In 
[ 11 and [4], what is calculated is the maaix element of the  propagator^ in a coherent state, 
effectively a phase space smearing of the propagator. It has been argued [9] that the phase 
space boundary conditions would smooth the caustic. In this article I will provide an explicit 
calculation of the coherent state matrix elements of the propagators at a caustic and indeed 
we will see that the (apparent) divergence is neutralized. 

The coordinate space neighbourhood of a caustic is [6,7] O(t -m,  so that it is a relatively 
small part of a & by & neighbourhood of phase space. However, in a two-dimensional 
coordinate space the (lowest-order Airy-type) caustic forms a line, which in general will 
pass through the coordinate space neighbourhood in question. Locally in path space, with 
respect to the path undergoing the focussing, on one side of the caustic line the two-time 
boundary condition (with the same T) has two solutions, on the other side zero. There are 
thus two questions: does the well known blowup of the semiclassical approximation in the 

 neighbourhood of a caustic preclude its use in this context? What kind of semiclassical 
approximation can one have when for p a t  of the region in question there is no classical 
path? 

In this article I will deal with these questions using the language developed in [6]. This 
allows us to retain a coordinate space description within the context of a time-independent, 
Lagrangian-based propagator. For simplicity, and because the essential problem is already 
present, we will deal with the onedimensional w e .  For fixed T, consider the semiclassical 
approximation for the propagator G(x, T; y ) .  In general this is given by a sum over classical 
paths but we concentrate here on the contribution from paths near a particular classical path 
connecting the endpoints. Specifically, suppose that for a and b there is a classical path x ( t )  
with x(0)  = a and x ( T )  = b and that a and b are conjugate. The quadratic form S2S has 
a vanishing eigenvalue and the corresponding mode, the Jacobi field, represents the shape 
of deviations from x ( t )  that to lowest order (at least) go through both a and b ,  providing a 
fan of focussing paths. Starting from an expansion of S in terms of eigenvalues of S’S, the 
propagator for points in a neighbourhood of a and b takes the form (afier integration over 
modes for which h f 0) 

G ( b  + Ab, T; a + Aa)  = exp [ [S(b, T; a) + p ( T ) A b  - p(O)Aa] 1 
1 x ‘/&g’ S d u e x p  [ [pu3 f q u A b  + r u A a ]  

where p ,  q and r are O(1) numbers and p ( T )  and p(0 )  are the classical momenta at the 
indicated times. The expression within quotation marks is a finite limit for hl 0. From 
(13) familiar properties of quantum caustics can be deduced. For example, the form u3/h  in 
the exponent implies that the significant range of integration for U is U 5 Tz ’ ’~ .  This in turn 
implies that the U integral is O(Zzii3) in place of the O@”’) size it would have if a quadratic 
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Xu2 were present in the action. Thus the propagator is greater by a factor h1/6 ,  which means 
that the ‘blowup’ suggested by the breakdown of the simplest w m  approximation at the 
caustic is actually the change in leading asymptotic order. Similarly, noting that uAb/h - 1 
defines the scale of Ab such that one is within the caustic region, we deduce that Ab - h2l3 
is the width of the caustict. Now the smearing of [4] is over a coordinate range of order 

so that Ab -A2/’ <<h’”, suggesting that the effect of the caustics may turn out to be 
small. We shall see that this is so. 

Using (13) the smearing effect will be calculated explicitly. Without loss of generality 
we assume that p ( T )  = p(0)  = 0. Following 111, we take matrix elements of 
G between coherent states centered about a pair of position and momentum points. 
The worst case is to have the positions be conjugate and the momenta equal to the 
momenta of the path. Let C be the matrix element between coherent states 1a.O) = 
I central position = a, central momentum = 0) and Ib, 0). Then 

[pu3 + u(qAb + rAa)] 

where ‘tame factor’ collects terms that do not affect our present arguments (such as 
exp[iS(b, T ;  a)/h]) and Q characterizes the coordinate spread of the coherent states, so 
that Ab - A. Now do the Ab and Aa integrations: 

C = [tame] /du exp [ $1 exp & [ (?)? + ($)I 
= [tame]]duexp(--j;i-+-) suu2 ipu3 

f i .  

The quantity s is order unity. Taking U = h, it is easily shown that the i u 3 p  term is 
unimportant in the face of the -uz/fi term. The integral, and thus the propagator, has no 
blowup., In particular, the integral gives the usual &, not h1/3. Higher order focal points 
(leading term fourth or higher power of U in the exponent) are no worse. 

The calculation just performed provides not merely an abstract argument in favour of the 
validity of smearing but an expression for the smeared propagator. Bear in mind, however, 
that we have only been looking at a single term in the propagator; full justification of the 
sum over classical paths expression involves other considerations as well, for example sizes 
of individual terms, as discussed elsewhere in this article. 

Remark. We earlier raised the question of how one could have a semiclassical 
approximation when there is no classical path, as is the case on the wrong side of the 
caustic. The answer is that the expression (13) still has elements of Feynman’s sum over 
all paths. The integral over U has been carried over from the original sum over ‘all’ paths, 
re-expressed in the basis defined by the eigenfunctions of 8’s. 

t A typographical error in [61 inverts the 2 and the 3 in giving the nnge of the caustic, 
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3.2. Shrinking of the van Vleck determinant along a chaotic path 

In this subsection we discuss the behaviour of the van Vleck determinant as time increases 
and one moves along the classical chaotic path. We will provide estimates of this time 
dependence in the case of positive Lyapunov exponent or exponents. First consider the 
situation when only one exponent is large. Recall that a2S/aaab is -I/(axfi,,/api.itid). 
However, axfiwl/apinitial represents the divergence rate of nearby paths-a quantity that 
grows in proportion to exp(Ar), with A the Lyapunov exponent. As in 1131, it follows 
that the van Vleck determinant shrinks like exp(-AT). Implicit in this is the assumption 
that nothing else interesting is happening. That is, notwithstanding the tendency of paths 
to diverge, there could be focussing as well. In terms of the directions defined by the 
diagonalization of M;j a2s/aaiabj ,  this means that initial perturbations in some directions 
go far away while others stay close and ultimately come back together. Such an event will 
cause the van Vleck determinant to diverge. In general, in the stadium or other systems, 
both processes take place. As we discussed above, the spatial region in which the caustic 
occurs is small as a function of ft, so that we will use the foregoing exponential estimates 
for the chaos induced shrinking of the van Vleck determinant. 

In the event of more than one large Lyapunov exponent, more than one direction, that 
is, more than one Jacobi field, will grow in time. The van Vleck determinant, which is the 
product of the eigenvalues of M, will then grow like the product of all the factors, namely, 
exp(T ha). We remark that unlike phase space volumes, coordinate space volumes need 
not be preserved under classical dynamics. 

3.3. Duration of the passage through a caustic:. quantum aspecrs 

In section 2.4 we showed that the time it takes for the (relevant) eigenvalue of the Jacobi- 
Morse equation to pass through zero was about the same for chaotic dynamics as for non- 
chaotic dynamics. However, as noted in section 3.2, and implicitly in the inverted parabola 
allusion in the opening of section 3, the product of the other eigenvalues is growing rapidly; 
if one were to ask the slightly different question: ‘what is the time for the entire product 
to go from some fixed positive number to some fixed negative number’ (or the other way 
round), then that time would indeed be short. However, that would be the wmng question. 
The need to have A (the eigenvalue of the Jacobi-Morse equation) away from zero enters at 
a significant stage in the derivation of (12) from the Feynman path integral (see [71). The 
semiclassical expansion is expressed over the stationary points of the action (the classical 
paths) and about each one of them one expands the path in coordinates that refer to the 
eigenfunctions of the Jacobi-Morse equation. For each classical path (Y one has 

(The h i t  N --f 00 is implicit.) If all eigenvalues are different from zero (on the appropriate 
scale of f t )  then one gets a denominator that is the square root of the product of the 
eigenvalues, leading in the usual way to the van Vleck determinant. (This expansion lies 
behind the expression (13) above,  in^ which one of the eigenvalues is nor away from zero.) 
What is seen from (14) is that the need to have a given eigenvalue large or small has little 
to do with what the other eigenvalues are doing. (There could conceivably be a relation 
to the next term in the expansion. That is, if the ‘p’ of (13) were exceptionally large one 
might need to change the range of U over which the truncation (14) is valid. We will argue 
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below that chaos does not demand large 'p' . )  It is true nevertheless that multiplication by 
the large product of the eigenvectors that are not passing through zero will speed the rate at 
which the overall product passes given numbers. However, this growth (of the product) is 
(inversely) part of the overall shrinking of the van Vleck determinant. Thus it has already 
been accounted for, in that all terms in the sum involve this small van Vleck factor. 

3.4. The range of integration for equation (13): small loops in the Lagrange manifolds 

One of the principal intuitions in trying to gauge the time over which semiclassical 
approximations should remain valid has been the idea 1.51 that as the Lagrange manifold 
folds and refolds (because of caustics) the area within loops will become smaller than A 
and destroy the separation between paths needed to make the asymptotic (stationary phase) 
approximation (to the path integral) valid. We would like to examine this argument from 
the perspective of the Jacobi-Morse equation formalism. In the latter approach, it is points 
in path space that must be separated. Path space is larger than phase space and we believe 
that this is why the semiclassical approximation has its surprisingly large range of validity. 
Thus two paths just having passed through a caustic are indeed close to each other-also 
in path space-but when folding occurs, even though it brings phase space regions back 
together, it does not imply proximity in path space. 

However, rather than deal in generalities we will examine (13) and the equations 
following it, since it is this integral whose stationary phase approximation we require. 
For the use we made of this integral one should have a sufficient range of (the dummy 
variable) U to integrate over and have the coefficient p neither too large nor too small (on 
appropriate scales of R to various powers, as usual). Since U and p appear as pu3 ,  the 
questions are interrelated. According to (12.18) of [6] (or (15.12) of [7]), 

where the primes on V refer to derivatives with respect to its spatial argument and q5 is 
the eigenfunction associated with the vanishing eigenvalue of the Jacobi-Morse equation. 
Recall that from ow earlier discussion the second derivative, V", is approximately a S- 
function (with finite multiplying coefficient, unlike the reflection case) for the caustics in 
the interior of the stadium, This &function peaks at the time at which the classical path x( t )  
hits the wall. Integrating with V"' will therefore give the derivative of q5 evaluated at the 
reflection point. This is not difficult to estimate. (If one is troubled by the singular functions, 
it is possible to use deep square wells in place of the &functions, but in fact the singularity 
is not severe and one merely needs to average the slope on two sides of the singular point.) 
For a one dimensional attractive potential W ( x )  = -p8(x) with asymmetric boundaries 
(at -r and +R, say) this derivative is O(1) x [exp(-pR) - exp(-pr)]. The asymmetric 
boundaries in this case refer to the previous and subsequent hitting times at the wall and 
are in general unequal. Since R, r and p are all of order unity, so, in general, is p .  It 
follows that the coefficients in the integral in (13) do not reflect the fact that x ( t )  represents 
an extended solution of chaotic dynamics. (Other coefficients in (13) are innocuous.) 

The allowed range of integration in (13) does have limitations but they should not be 
severe or common. If p had turned out to be extremely small there would be limits (in 
that case large variation of U would have been required), but this would be another way 
of saying that one is dealing with a higher order caustic. With small coefficients of cubic 
or higher order terms one gets into the catastrophe theory framework of [6], in which the 
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F i e  1. A loop in phase space. with coordinate space the horizontal axis. Where the curye 
is tangent to a vertical line there is a caustic. When Ab # 0. (see (13)) there are two (marked) 
points along the curye where the derivative of the polynomial in (13) vanishes, corresponding 
to paths solving the two point baundaIy-value problem (and yielding their momenta, which 
is the vertical axis in the figure). Continuing that vertical line away from those points yields 
orher solutions. However, since that line does not correspond to the range of integration of U. 

these further intersections do not imply pafhs to be encountered in the further reaches of the U 

integmtion. 

many paths are given by the unfolding of the catastrophe. But p is not in general small?. 
The other limitation on the range of U would come from the terminating Wrinkles referred 
to above in connection with discontinuities in the second derivative of the boundary (for 
the stadium). These chop the caustics into shorter pieces. However, it does not seem to 
me that these should be common. Although there are many, many paths, any given path 
has not gone through many caustics, nor has it bounced off the walls many times. The 
large number of paths comes because one exponentiates the number of times a path goes 
through a caustic. Since for this chaotic system the Lyapunov number is essentially unity, 
the number of bounces of the wall and the number of caustics traversed by a given path 
are of the same order. For paths that did in fact approach the non-smooth portions of the 
wall there would be limitations on the integral, but for the times studied in [I] this is not 
so common an occurrence. 

This brings up the question of order4 loops in phase space and the limitations they 
may place on the semiclassical approximation. In the language we are using here, this 
limitahon is not evident, if it exists at all. In figure 1 we show a typical such situation. 
Where a vertical line is tangent to the loop there is a caustic. When one is away from the 
actual caustic the central point of the U integration does not lie in the phase plane. For 
Ab # 0, when the derivative of the polynomial in (13) vanishes one has two solutions of 
the classical boundary-value problem [6] and these define a vertical line (since by definition 
the final position is the same for both paths) that intersects the loop in two points near 
the caustic. The continuation of that line in phase space provides other solutions to the 
boundary-value problem. However, the continuation of U further away from its zero does 
not correspond to these solutions, but to a direction in path space that need have no further 
classical path solutions. (In general it will not correspond to such solutions since that would 
indicate a higher order caustic. This would mean that ‘p’ above would have to be small, 

t The quantum localization phenomenon discussed in section 3.6 could reduce the eigenfunction near the endpoints, 
but there would be no reason for the coefficient p.  defined as an integral over the entire time interval, to be small, 
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and we have just shown that it is not. Fourth or higher order caustics will involve more 
complex looping and folding, but as for the simpler caustic, only the singularities generated 
by the polynomial derived from the functional integral need be considered. Paths from later 
foldings are not in the range of ‘U’ integration.) 

3.5. Adding the m y  pahs 
We return to the semiclassical expression for the propagator 

with the sum running over classical paths xu@) that satisfy the boundary conditions. We 
assume that, as in [l], phase space averaging has been done and it isfamilies of paths that 
satisfy the boundary conditions, i.e. collections of nearly identical paths that thread their 
way from one volume vi to another uf in a time that is long compared to the inverse of 
the Lyapunov exponent. We also assume that the momentum space restriction only reduces 
our path proliferation estimates by an overall (approximate) constant. Moreover, in this 
subsection we accept the proposition that the caustic problems have been ameliorated by 
the phase space averaging. 

In trying to assess validity of (15). one is impressed by the enormous number of 
contributions to the sum, for even moderate times. In [l], as many as 30000 paths enter the 
calculations. One wonders then if a subtle cancellation is needed in the sum (15) in order 
to get the correct result. We will see that there is a cancellation, that it is generic, and that 
it provides the classical-quantum correspondence. 

A,)) while the 
contribution from each drops by exp(-TA/Z) (or exp(-TxA&)). The phases of the 
terms are quite different from one another. After integration over the small phase space 
volume each term is of the for” 

The number of terms (= nr) grows like (U/ V )  exp(TA) (or exp(T 

[van Vleck factor], . exp(iS,/R)~(p,,)*~(p.i) 
where @ and $ are the wavefunctions within which G is sandwiched and (the Fourier 
transform of) each is evaluated at the gradient of S (i.e. the momentum) for that path. 
These momenta do not vary much (by assumption on @ and @) but the classical actions 
S, do. For the stadium they are essentially the lengths of the paths. If we assume 
that the sum is a random walk in the complex plane then the norm of the propagator 
is the distance that walk is from the origin. For a random walk this will be of order 
fl. It follows that G itself will be of order f l  (x appropriate wavefunctions), with 
the large numbers generated by the Lyapunov exponents dropping out. (That is, norm 
= IC1 - f l  x step size J(v/V)exp(TA) x .,fW = m.) The norm 
squared of the amplitude (the probability) is therefore precisely what one would expect for 
a particle that has been ergodically spread over the entire coordinate space. 

Two points emerge from this calculation. First, despite the enormous number of 
contributions to the sum there is no reason to expect a breakdown of the semiclassical 
ap roximation. Secondly, the actual reduction of the propagator from a potentially disastrous 
4% (= N x  I / f l =  number ofconrributions times their size) to order unity, is a ‘random’ 
cancellation of phases. You can (almost) always depend on the random walk to give the 
right size propagator, but how it gets that way will involve diverse contributions with no a 
priori relation to one another. The messiness of the chaotic dynamics is still present, but 
it does not invalidate the semiclassical propagator-on the contrary, it sets the propagator 
to a reasonable size. I find that the resulting structure, involving classical-chaos-induced 
‘random’ behaviour, provides a satisfying extension on the correspondence principle. 
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3.6. Random potentials 

There has already occurred a coincidence of technique for problems of quantum chaos 
and localization in a random potential [14]. The Jacobi-Morse equation provides a similar 
opportunity. Consider a path (for chaotic dynamics in a stadium) that has bounced off a 
wall many times and for which the van Vleck determinant is extremely small. Thinking 
of the Jacobi-Morse equation as a Schrodinger equation, this will look like a particle in 
a random potential. This assumes that the path is such that there is no regularity in its 
pattern of bounces off the wall. Without any further effort, we know that the product of the 
eigenvalues of  this Schrodinger-like equation grows exponentially with the ‘length’ of the 
interval (in its original interpretation: time). This remark does not depend on the accuracy 
of the semiclassical propagator. Note though that the product involves an implicit truncation 
in that the upper eigenvalues will be influenced by the mesh used for the discretization. 

Conversely, we can deduce from this correspondence that, as for random potentials in 
one dimension, the eigenfunctions of the Jacobi-Morse equation will be localized. That is, 
the eigenfunctions + ( t )  used above will not generally extend over the entire interval [0, TI. 
In further analysis of the sort performed in this article, such a feature may prove significant. 

4. Conelusions and prospects 

There are two sorts of conclusions that I wish to draw from~this article. One sort 
concerns the specific issue addressed the remarkable long-time accuracy of the semiclassical 
timedependent propagator for the stadium. The other concerns the technique employed, 
principally the Morse-Jacobi equation and the value of its eigenfunction expansion for 
tracking through path space. 

The Morse-Jacobi equation is the eigenvalue equation that arises naturally from the path 
integral as a result’of expanding about a variational extremal. For the purpose of learning 
about the classical mechanics, this method may at times be clumsy, for example in requiring 
lengthy analysis merely to establish that there is a focal point at a reflection. However, 
having established that, we were able to go on to obtain results about dynamical behaviour 
in the neighbourhood of the caustic. These results played a role in establishing important 
quantum properties. For example, our estimates for the coefficient of the cubic term for 
the Airy integral near the caustic implied that small area loops of the Lagrange manifold 
need not undermine the semiclassical expansion. This is closely related to the general 
principle proposed in the introduction, namely that a factor in justifying the semiclassical 
approximation in the presence of a large number of classical paths is the existence of a lot 
more room in path space than in phase space. 

Another technical feature that provided a satisfying interweaving of classical and 
quantum properties-an extension of the correspondence principle’, in effect-is the 
Brownian-motion-like phase cancellation that provides the right coordinate space density 
for the propagator, notwithstanding the large number of paths. Classical chaos guarantees 
pseudo-random phase contributions and this is just what is needed to make the sum of a 
large numberof terms attain the correct value. (The phases in fact are not random and the 
correct quantum phase can also be obtained from the propagator. But for the classical result 
one does not need the phase information.) 

With regard to the results of [l] we find several factors that play a role in their observed 
long-time accuracy. (i) Even though path proliferation implies a large number of caustics, 
they are not necessarily placed for greatest mischief. That is, we found that with every 
reflection there is a caustic, a caustic located right at the stadium wall. (And these are not 
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dangerous for the semiclassical expansion.) Additional caustics are expected in the middle 
of the stadium, but as far as anyone knows they may he few. (ii) Even with caustics, an 
explicit expression for the phase space smeared propagator shows that the focussing reIated 
blowup is smoothed. (iii) Arguments related to small folds in the Lagrange manifold do 
not seem to apply for at least two reasons. First in using the path integral stationary phase 
approximation, the variables (in the Morse-Jacobi reduced integral) do not range over phase 
space, but over path space, where they do not encounter solutions of the two-time boundary 
problem corresponding to the other folds. Secondly, flat regions of the stadium boundary 
lead to termination of caustic lines for those caustics that may be in the stadium. 

Although the matters discussed here reflect on the 'log A' time barrier, there are 
other limitations on 'long' time accuracy whose existence was pointed out in 1151. These 
l i t a t ions  appear to be on the scale of 1 F ,  which is quite a bit longer than that discussed 
in [l]. 

Our results suggest many further questions. One that should not be difficult is to find 
the (fixed time) caustics for the stadium. Another-which would be difficult-is to repeat 
the work of [I] for a more realistic potential, but one that exhibits chaos as complete as that 
of the stadiumt. The present paper has certainly not exhausted the power of the Jacobi- 
Morse equation. For example, we nowhere used the fact that the 'wavefunctions' should be 
localized as a result of the quasi random potential. The approaches suggested by the Jacobi- 
Morse equation seem to be complementary to those now popular in the field of quantum 
chaos, and given the difficulty of making m y  analytic headway for chaotic systems, they 
should prove useful. 
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Appendix. Wo-time boundary conditions for motion in a disk 

In this appendix we exhibit a system with caustics but without exponential path proliferation. 
The system is the stadium without its chaos-producing straight sides-simply a disk. In 
particular we show that the number of energy-bounded solutions of the two-time boundary- 
value problem grows linearly with time. This demonstrates that the caustics associated 
with reflection off the semicircular caps of the stadium do not of themselves entail path 
proliferation. 

A particle moves in two dimensions, freely, within a circle. Use coordinates ( r ,  6') with 
0 < r < 1 and 0 < 6' c 2rr. Given a = (re,  (Y = i (initial), f (final), and an elapsed 
time T, we seek paths, up to a maximum energy E ,  connecting these points. 

Motion within the circle is described by successive angles at which the particle hits the 
circumference. If (@I, @*) is a pair of successive hitting angles, then the nth hit has angle 

t [I61 does discuss a softer potential, but in the example studied the enormous prolifemion of paths does not 
match that of the stadium. 
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@n = @2 + (n - 2)(@2 - @I). For given (r, 0) let the direction of motion of the particle 
through that point be $ (measured counterclockwise from the radius passing through (r, e ) ) .  
It follows that @I and @Z are given by the two solutions of @ = 0 + $ - sin-'@ sin$). 
The step size, A@ @Z - @I,  is 

A@ = i~ - 2sin-'(r sin$). (AI) 

Thus for any single z = (r, 0) and associated trajectory angle $, one can compute the step 
size for trajectories passing through z. The step size is obviously independent of 9 .  

For the two-time boundary condition, zi and zf lie on a common trajectory so that 
the respective step sizes computed using (A.l) must be the same. Therefore if a putative 
initial direction $ is given, the final direction is given by sin-'[(ri/rf) sin$] (with two-fold 
ambiguity). This means that the ring impact point, Y, just before the trajectory passes 
through zf, is also fixed. 

For any particular zi, putative $, energy bound E and time T ,  there will be a finite 
collection of ring impact points,whose cardinality N is bounded by TJEJ;?(1-:. r. ) Note 
that this bound is independent of 6. (There is an O( 1) correction that we ignore.) To have a 
solution of the two-time boundary condition, one of these ring impact points must coincide 
with Y, which also depends in a mild way on 9. 

As $ varies (from 0 to Zn), the N associated impact points move around the circle, 
leading to N potential solutions of the two-time boundary condition. Order unity corrections 
to this argument can occur because of motion of \JI and relatively small changes in N as 
q5 varies. In addition the two-valued inverse sinefunction may also induce a further factor 
two. Notwithstanding these effects, the number of solutions is bounded by N, which for 
fixed E (and provided rirf < 1) grows linearly with T. 
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